Balanced Switching Schemes for Gradient-Error Compensation in Current-Steering DACs

نویسندگان

  • Xueqing Li
  • Qi Wei
  • Fei Qiao
  • Huazhong Yang
چکیده

This paper introduces balanced switching schemes to compensate linear and quadratic gradient errors, in the unary current source array of a current-steering digital-to-analog converter (DAC). A novel algorithm is proposed to avoid the accumulation of gradient errors, yielding much less integral nonlinearities (INLs) than conventional switching schemes. Switching scheme examples with different number of current cells are also exhibited in this paper, including symmetric arrays and nonsymmetric arrays in round and square outlines. (a) For symmetric arrays where each cell is divided into two parallel concentric ones, the simulated INL of the proposed round/square switching scheme is less than 25%/40% of conventional switching schemes, respectively. Such improvement is achieved by the cancelation of linear errors and the reduction of accumulated quadratic errors to near the absolute lower bound, using the proposed balanced algorithm. (b) For non-symmetric arrays, i.e. arrays where cells are not divided into parallel ones, linear errors cannot be canceled, and the accumulated INL varies with different quadratic error distribution centers. In this case, the proposed algorithm strictly controls the accumulation of quadratic gradient errors, and different from the algorithm in symmetric arrays, linear errors are also strictly controlled in two orthogonal directions simultaneously. Therefore, the INLs of the proposed non-symmetric switching schemes are less than 64% of conventional switching schemes. key words: digital-to-analog converter, gradient errors, nonlinearity, switching scheme, the integral nonlinearity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Switching Sequences for One-dimensional Linear Gradient Error Compensation in unary DAC Arrays

Gradient error can be compensated by optimizing switching sequences of DAC arrays. This paper establishes an absolute lower bound of integral nonlinearity (INL) which may be achieved by optimizing switching sequences. Optimal switching sequences that meet this lower bound are presented for one-dimensional linear gradient error compensation in unary (thermometer decoded) DAC arrays. The sequence...

متن کامل

A Novel Architecture for Current-steering Digital to Analog Converters

This paper presents a novel Current Steering Digital to Analog Converter architecture to reduce area as well as power dissipation. The current cells of conventional binary weighted architecture require larger size of transistors for MSBs. In this paper, same sized current cell transistors for MSBs as that of LSBs and a current mirror circuit is used between the load and MSBs to provide necessar...

متن کامل

Design of a High Range, High Efficiency Spread Spectrum Transmitter for Audio Communication Applications

This work proposes a direct sequence spread spectrum transmitter with high transmission range and efficiency for audio signals. It is shown that by choosing high process gain for spread spectrum signal the data could reach a range of 55km in the 2.4GHz ISM band. By employing a light modulation scheme, we have a relaxed SNR requirement for having a low bit error rate (BER) which translates to re...

متن کامل

Current-steering Digital-to-analog Converters

Data converters, i.e., analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), are interface circuits between the analog and digital domains. They are used in, e.g., digital audio applications, data communication applications , and other types of applications where conversion between analog and digital signal representation is required. This work covers different aspects re...

متن کامل

Low Power Designs of Current Steered DACs in CMOS Process: A Review

Low power design has become popular nowadays because ofdevelopment of improveddata converters with high resolution in CMOS process. Electronic device manufacturersare competing each other to produce devices that can extend battery life, have inexpensive packaging and cooling systems as well as reduce the size.The objective of this paper is to review various low power designs in digital to analo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 95-C  شماره 

صفحات  -

تاریخ انتشار 2012